Introduction to Data Analytics
Data analytics is referred to as a science of evaluating raw data with the intention of making conclusions regarding that information. Data analytics is employed in various industries to permit organization and companies to make improved business decisions and in science to disprove and verify existing theories or models. It is the quantitative and qualitative processes and techniques used to improve business gain and productivity. Data is categorize and extracted to analyze and identify behavioral patterns and data, and techniques vary based on the requirements of an organization (Grossman & Siegel, 2014).
Read also Amazon Vision Statement Analysis
Data analytics permits businesses to evaluate large sets of data to respond to current needs in individual industry of operation. With data being continuously produced by machines and humans, the sheer available data amount is much more massive as compared to the past. Data analytic technique is normally employed in organizations dealing with big data. Big data is the data whose variety, velocity, and volume make it hard for organization to extract, analyze, and manage value using conventional or current systems and methods. In this case, the term analytics is employed as the process which extracts value from data by distributing and creating reports, deploying and building data-mining and statistical models, visualizing and exploring data, sense-making, as well as other associated techniques. The organizational data might be external or internal, processing might be batch, near real-time, or real-time, and any of these combination is probable (Grossman & Siegel, 2014).
Read also Company With Best Innovation – Amazon
Data analytics in business started in 1950s during business intelligence era where analytics 1.0 was introduced. This was a time of progress since data regarding customer interactions, sales, and production processes among others were analyzed, aggregated and recorded for the first time. New competencies were needed to manage data. Sets of data were small in volume and static in velocity to be segregated for analysis in warehouses. More time was spent in data preparation than in analysis. This was followed by analytic two which was introduced through big data era. This was established with establishment of internet and increase in the volume of customers created data.
Read also Recruiting and Staffing Plan – Amazon’s Customer Service Managers
More and more data were created and there was a great need of developing a new way to handle large volumes of data. This increased the need for effective data analysis to enable the organizations to use the received data to make right decisions in business. This was followed by analytic 3.0 which is data-enriched offerings era. This era focuses on employing analytics to support customer-facing features, services, and products. This is commonly used by companies such as Amazon that trade online, since they receive a huge volume of data from their customer. The main aim of the analytic 3.0 is to enhance customer’s decision making experience while using these sites (Davenport, 2013).
Advantages and Disadvantages of Using Data Analytics in Amazon
In 2013, Amazon employed Redshift form of data analytics. The main advantage to this form of data analytics include (Linthicum, 2013):
- Improvement in performance when blending data with huge data sets which a number of analysts use to make decisions regarding customer analysis, marketing campaign optimization, financial transactions, inventory levels and customer analysis.
- The aptitude to offer huge data as required, without experiencing a slow and costly process of procurement to acquire software and hardware.
Read also Difference Between Metrics and Analytics
- Provide the aptitude to scale to manage huge databases, probable well past the petabyte range.
- The ability to employ an elastic resources set to return result sets containing sufficient speed to be relevant when managing a business
- It provide the ability to save large amount of money with time as compared to the cost of utilizing own software and hardware.
Read also Using Human Resource Analytics to Improve Health Care Workforce
Among the presented disadvantages include:
- The probability of outages since any cloud computing failure will public and thus creating a bad reputation for the company.
- The data integration and migration cost is high and one may require a large bandwidth for internal data transmission.
- Another major disadvantage is lack of the best practice since this technology is still new in the market.
Challenges to Business Management in Amazon for Data Analytic Implementation
One of the major challenges that that managers experience when implementing data analytic in organization include selecting the right individuals. The new data analytic evolution is still new and thus it is in its incubation stage. Thus there is still a big knowledge gap that organizations need to cover to enhance effective implementation of data analytics. Data analytic is currently scarce an expensive. Another major challenge encountered is handling unstructured data. The implementation of analytic data requires to establish relevant data and thus, the management is required to establish ways for noise filtering to be able to acquire the best. The other major challenge experienced in implementation of data analytic is competition. Different organizations are employing different strategies to create changes and to promote their level of services (McKenzie, 2014).
Read also Amazon’s SWOT , PESTEL Analysis and Porter’s Five Force Appraisal Analysis
Amazon need to consider using the available resources to obtain the right individuals to handle the problem. Using the right individuals will enhance the company profitability and increase its return. It creates the surety for the employed data analytics and save the company from future problems. Thus, Amazon should consider paying the best data analytics for to enhance the best outcome. This will also give the company a good ground to compete with others. This will allow the company to employ the best software since it will be working with assistance of the best experts in the market. To deal with unstructured data, the company will employ feedback loop to create highly targeted data for over time examination (McKenzie, 2014).
Rea also Google Experiences with People Analytics
Amazon Transformation by Data Analytics
Data analytics in Amazon provides customers with a simple, cost efficient technique to analyze and store huge volume of data. The integration of Amazon Redshift in-database blending with Alteryx Analytics 10.0’s offers analysts in line-of-business with unique chance to respond faster to critical questions and with availability of all data sets unlike before. This increases the level of responsiveness and eventually the level of customer’s satisfaction (Regional Business News, 2015).
Trend Speculation
Amazon is among the companies that have taken the initiative of employing the most recent form of data analytics. The company is currently using Redshift which is a form of cloud data analytic. Moreover, Amazon is among a few companies that keep on receiving data in large volumes. In this regard, the company is still anticipated to employ the most modern data analytic measures and in the next 10 years it is anticipated to be the leading company in the biggest thing in the data analytics field. Data analytics can also be used in collecting data regarding the number of sales made and the customers flow in the website. This allows the company to analyze the business trend and its general performance of the company (Vertex, 2015).
You can order a unique research paper on Data Analytics Use in Amazon or any other topic at an affordable price.
Get Your Custom Paper From Professional Writers. 100% Plagiarism Free, No AI Generated Content and Good Grade Guarantee. We Have Experts In All Subjects.
Place Your Order Now